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Product Inequalities Involving the

Multivariate Normal Distribution

Abstract
Suppose Y~ = (Xi,...,xi) possesses a multivariate normal
distribution with mean vector 0 and positive semidefinite
covariance matrix I . If €; < Rpi denote convex regions

symmetric about the origin, then conditions are given such that

k
P(X.1 eCi, 1=1, ...k} 2 .H P(x1 eCi)
i=1
and/or
2 k
P(Yi eCi, 1= k) = 'Hl P(Xi sC&]
1:

obtain. These conditions imply that chi-squared random variables
defined from a multivariate normal distribution are always
positively dependent and non negatively correlated. Other appli-
cations involve conservative simultaneous confidence regions in

a multivariate regression setting.

AMS Classification numbers: Primary 62H99; Secondary 62E10.

Key words and phrases: product inequality, multivariate normal,
Wishart matrix, simultaneous confidence intervals
in multivariate regression.




1. INTRODUCTION.

The following question has received the attention of
several investigators. Suppose Y~ (X{, Ii,..., !i)

possesses a multivariate normal distribution with mean vector

0 and positive semidefinite (p.s.d.) covariance matrix I, i.e. Y :
is n(0,%) . The dimension of Y; is p, so that the dimen- f
sion of Y must be g p; - We let C; denote a convex re- %
gion in RPi(and Ei its complement) which is symmetric about %
the origin (x ¢ Ci implies - x ¢ Ci)' Under what conditions 3
will at least one of the two inequalities ;
k
(1.1) PCY; ¢ Cijo 1 = 1, ¢vsy k) 2 'le(Ii e C;)
and
K
(1.2) P(Y; Cl, S T NSO izlP(yi ¢ fi)

nold? A primary application of such inequalities has been
obtaining conservative simultaneous confidence bounds which
are easily computable although the inequality is useful in
other areas as well,.

Dunn (1958) showed the inequality (1.1) would hold if
Py * 1 for all i and the Ci were equal, providing
k=2 or k=3. (For k=2 it is easily shown that
(1.1) and (1.2) are equivalent.) DMoreover she proved her
conjecture for arbitrary k if the correlation matrix

corresponding to ¥ was of the form Pyy ™ hihi s 133%™ ek 5

i1 and 0 (hi €1 5 2™ .. .q.K




Sitdak (1907) was able to extend bunn's results to the
case of an arbitrary covariance matrix and different Ci's
(although still one dimensional).

Scott (1967) purported to prove the same result as Sidak
as well as inequality (1.2) with the same conditions holding.
lHHowever a subtle conditioning error occurs in Scott's argu-
ments and invalidates his proofs. Moreover, Sidak (1971) has
constructed a counterexample to Scott's second inequality so
that (1.2) does not hold under these conditions.

In light of Sidak's 1967 results it is tempting to con-
jecture an analogue of a one sided result due to Slepian (1962),
namely that decreasing the absolute value of the correlations

i i = 1, ...; k) « However

should decrease P(cj < Yi £ C
a counter example of Sidak (1968) showed that this is not

true in general. He did show however that the conjecture

held if the absolute values of the correlations decreased

in a particular manner.

Khatri (1967) was able to prove (1.1) for higher dimen-
sions (although the p; must be equal) when the Ci's are
ellipsoids of the form {5-§'A5:=ci} , the covariance structure
of Y is the Kronecker product it 1 Lan » and A and VY
are positive semidefinite.

By adding a restriction similar to Dunn's on the matrix
¥ , Khatri was able to prove (1.2) in the same setting.

He also considered some situations where the ellipsoids are

random. Later Khatri (1970) had apparently extended his
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1967 results to the point that (1.1) and (1.2) hold without
any restrictions on I or the Ci's (other than those ini-
tially assumed). However Sidak (1975) isolated an unobtrusive
error in both Scott's 1967 paper and Khatri's 1970 paper. More-
over, Sidak's 1971 counterexample has shown that the general
inequality (1.2) without restrictions is incorrect. Das

Gupta et. al. (1972) considered inequalities of the type

(1.1) and (1.2) in the more general setting of elliptically
contoured distributions. They were able to establish in-
equality (1.1) with out restrictions on £ providing every

P; exceptone equals one.

Tong (1970) and Sidak (1973) have established some
inequalities related to (1.1) and (1.2) when all the corre-
lations determined by I are identical.

Whether inequality (1.1) holds in general without addi-
tional assumptions has been an open question discussed in
several of the above references. It is the purpose of this
paper to give some new conditions under which inequalities
(1.1) or (1.2) hold and discuss briefly a few applications

which result.

2. THEOREMS AND PROOFS.

We will have need of the following lemmas in proving
our theorems,
LEMMA 1. If § = (Zl’ Fp Zp) is a random vector with

density f(z) symmetric about (0 (f(z) = f(-z) for all




) such that {z; f(z) < ¢} 1is convex for all non-negative

nd

s o - . )
» @ 1s an arbitrary fixed vector in R

(9]

and € s 8
cenvex set symmetric about the origin, then P(Z ¢ C + )a)
is a nonincreasing function of A(0 s A < «) ,

This lemma is due to T. A. Anderson (1955) and is well

Known.
LEMMA 2. Suppose the square, symmetric matrix A 1is
e g M ;
partitioned as A = \ \ where All and A,, (nonsincular)
o & Wi+ i
are square. Then A 1is positive definite (p.d.) iff both
All - A ,A.,-lA,I and A,, are positive definite.
PROOE . It is well Kknown that if E 1is a p.d. matrix

and D is nonsingular (same dimension), then DED” 1is p.d.

I1f we define the matrix

then B 1is clearly nonsingular. However then

N = R milats. e 0
paB” = | 11 " 122¢ 21 :
0 A b
which implies the desired result.
LEMMA 3. 5 hl(x), h:(x) are nonnegative functions

cither both nonincreasing or both nondecreasing and X is

a random variable, then




E hy(X) hy(X) = E hy(X)+E h,(X) .

This result is well known and appears in various places,
one place being Kimball (1951).

LEMMA 4. If x = (xl, < xp)‘ is a p-variate vector
and ¢(x) 1is a real-valued function invariant under orthogonal
transformation (¢ (Ax) = ¢(x) for every orthogonal matrix

-

A), then ¢(x) is a function of x only through Xx;

PROOF. For a given vector Xx = (xl,
0(x) denote an orthogonal matrix such that 0(x) x =
((Exi)k, 0, ..., 0)° . (WLOG we may assume 0(ax) = 0(x)
for any positive constant a.) The assumption then guarantees
that ¢(x) = ¢#(0(x)x) 1is a function of only Ix]

Theorem 1 is, in one sense, a generalization of a theorem

by Das Gupta et. al. (1973).

y
TAEOREM 1. Suppose (;l) is n(0, ) with covariance
L O
matrix & -expressable as [ = (leIl“) and that C 1is an
8 It &

arbitrary convex set symmetric about (0 . Then if A is

idempotent (A* = A)

0
=<
SN
=
14
(3]
/\
(o]
4
v

P(Y,eC)P(Y;AY, =« )

for all ¢ = U




,().

PROOF. By making lineuar transformations on Xl and

Y, which may reduce the number of random variables, we may
assume WLOG that both tll and I,, are of full rank and

that the left side of (2.1) is

LY

SN
o

] s ~

We may also assume WLOG that ¥ 1is full rank, since 1if it

is not, we may define a sequence of positive definite matrices
of the same form which converge elementwise to I and then
use a limiting argument to obtain the desired conclusion.

3y a continuity argument, we may replace 1,, Dby

(1 - €)I,, and still have I be positive definite if ¢
is sufficiently small. Thus the augmented matrix,

¥ s b

~L1 ~12 12
(5,2 et Cr S LT

v

is positive definite for ¢ sufficiently small.
To see this, partition off the last row and column of

submatrices and note from Lemma 2 that ¥* is p.d. iff

SR
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and (l1-¢)I1,, are p.d.

Suppose now that (Y,

1<
TN
-
na
\
_—
\
—
7
=
!
<
-
*
S

Then

we may write

eClY, ds (B  Z/(1-2), I,; - Ly,E,,/(1-€))"

where I is n(0,(1 - €}I.,) « If we let [Z] = (;:ils

1
denote the distance from I to the origin, we may express

Z=2Q(2Zl, 0,..., 0)° where the random orthogonal matrix Q
and |I| are independent. Moreover, since the distribution
of Q is invariant if multiplied on the left by a fixed
orthogonal matrix, Q must posess the 'laar invariate distri-
bution discussed in Anderson (1958). Since the conditional
distribution of Y;Y, 1is (except for a constant) a noncen-

tral chi squared distribution with noncentrality parameter

|Z]* , and hence free of Q , we may express the quantity in

(2.5) 5O[E P(Y,eClQ, (2D )P(Y5Y, scllzD] .
2| Q o

3y Lemma 1, the second factor of the integrand is a decreas-

ing function of |;i . Similarly, for a fixed value of Q ,




=

{ the integrand of E is nonincreasing in [Z]| , and hence
Q
8 p(X1€C|Q, [Z]) is nonincreasing in |Z] . Then by apply-

ing Lemma 3, the expression in (2.5) must be

iV

7: QP(zlcCIQ.l;)--g P(Y; Y, = cl[Z])
»

[z zl

= P(Y;C) *P(Y;Y, < ©)
which was the desired result.
3y replacing the words ""monincreasing in [Z[|" Dby
"nondecreasing in |Z|" the following corollary is immediate.

COROLLARY 1. Under the same assumptions as in Theorem 1,

=TT N 2T DR M

PLY.eC, Y AY, = ¢} = P(Y,eC)P(Y,AY, 2 c)

If we assume that C is of the form
C=0n {y, xihy; < ¢;)
1

where the A, are idempotent matrices, then repeated appli-

cation of Theorem 1 gives the following corollary.

:
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COROLLARY 2. If Y” = ({3 +.+s Yg) is n(Q,Z) where

Y Py

the corresponding partition of I is

-

(5 e




Rgy < gt N By
L = P31 "ag :
St Tk
then
X
(2.6) l‘(\:i"'\i\:i Cinl =1, +uy, :\).i.j.l l‘():i'.\-l\:i S c)

1

for all positive constants Cps woen O o
Fhis is a generalization of Sidak's (1907) inequality
in the sense that a symmetric interval generalizes to a

symmetric spheroid in higher dimensions and a n(0,1) random

variable generalizes to a n(0,I) random vector. Corollary

2 states that the chi squared random variables Y; Ai!i are
positively orthant dependent. Stronger forms of dependency
such as associativity, positive regression dependence and
monotone likelihood ratio dependence as discussed tor example
in Dykstra, llewett, and Thompson (1973) do not hold in general
for these chi squared variables,

lowever, when Kk = 2, more can be said about the nature
of the inequality in Corollary 2 as indicated in the following

theorem.,

b
THEOREM 2. If (Y ) is n(Q,f), where I may be

partitioned as

o TID A

O TPl DERARRRIERET SRR

-




then for all < and ¢

(2.7) P(Y1Xy = ©

is a nondecreasing function of the characteristic roots of &, .)

12™21
PROOF.,  There exist orthogonal matrices Q4 and  Q, such
that
¥ L
L . - 2
Ql,‘ ,Qy = d\.lg(pl", A "m‘
where Ppesesar, are the characteristic roots of Yl,Y,]. Since
we may express (2.7) as
l‘l l“
2 ) il A ;
2.8) I NYTI'CI_ b \i“l,\l. P } \;,le.\gn
Y?,}f i=2 B oA & o

where ([T,}Q) denote the random vectors (Y,,Y,) with the first

L* =g
components removed, if we increase only S it is well known that
the integrand, and hence the whole expression must increase,
Since o is not special, the theorem casily follows,

In attempting to extend Corollary 2 to cllipsoidal regions
rather than spheroids, difficultics are encountered. However, by
putting a rather stringent condition on the covariance structure,
a result rather similar to Khatri's (1907) result, though stated
differently, is possible

THEOREM 3. Let Y 7'= (Y{se.o0Yy) denote o kp x 1 random

vector possessing an n(0, Bay) distribution vherve

i
¥
il
£
'
¢
|:
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| s
: Byal  Baak x4 s BB
i (2.9) Be gy = y
i : Bagl .
j . .

. . . . bkkz

is the Kronecker product of B and X . Then if A 1is a

MRS A AR AR 7 %

symmetric p.d. matrix,

k
(230)  ROT R ee o g ) =1 (Y

for all positive constants Cps vves

PROOF. We may assume WLOG that B and I are full

rank. Then, by using the nonsingular matrix Q such that

QIQ°=1 and Q A Q" = diag A = ()

where ). are the roots of |A - I 0 , we may express

1
(2.10) as
(2.11) Py a"ly, < {1 k) » ]ﬁ Py A Y.< ¢l
. (~1 ~i Ci, & - 9 v vy = 1 ("’i Ni-. Li

where

1<

has covariance matrix B g I . The augmented

matrix

byl ¢ o o blkI blkI

B*e] =




_12-

will be p.d. if € >0 1is sufficiently close to 0. Thus if

(X{, g Xg, 2°)" is n(0, B* ® 1), the left side of (2.11)

is expressable as

R R : . et 3 L i
5 l(ll/\ \i'«.i.L-—l,...,k-l|:)'l’(}k/\ \\R‘Lk|:) .

~

-
-
~

However, by the diagonal structure of l\-J and the condi-

tional covariance structure of Y given Z , it follows
from Lemma 1 that each factor of the integrand is a non-

increasing function of 21 when 22, e are held

'y p
fixed. Repeated applications of Lemma 3 imply the desired
result.

One might hope that Theorem 3 would extend in certain
situations to the case when A is random. Under the right
conditons, this does indeed happen; the right conditions

being that A possess a central Wishart distribution with

covariance matrix ¥ and that A be independent of Y

COROLLARY 3. If Y¥* = (Y{, ..., Y7) is n(Q, Bsz) , s

has a central Wishart distribution with covariance matrix

(S is W(v,Z)) , and Y and S are independent, then

K
- R P . o
(2.22) P(\ib \i S €y o § 1 IR 9 EQP(\iS \i--c.) for

all positive constants Crs Coavney C

PROOF. Clearly we may assume & = [ WLOG. Then the

1 <= 1 W

conditional distribution of (Y/S "Y,,..., Y'S 'Y;) given I




3 8=

S depends upon S only through its characteristic roots
Q. (WI. LS Wp)
3y Theorem 3

k e
mP(Y, S 'Y. s ¢l ¢)
1 1

Since the charactertic roots of a Wishart matrix with
identity covariance matrix are stochastically increasing in
sequence (Dykstra and !lewett (1978)), and since each factor

of the integrand in (2.14) is nondecreasing in . Theorem 1

i ’
of Dykstra, 'lewett and Thompson (1973) preserves the desired
inequality when the product sign is brought outside the es-

pectation sign.

3. APPLICATIONS.

Since the right side of the (2.6) is just the product
of central chi-squared probabilities, Corollary 2 essentially
states that chi-squared random variables which are quadratic
forms of a multivariate normal vector are always positively
orthant dependent as defined in Dykstra et. al. (1973).
lowever an example of Sidak's (1971) shows that stronger
forms of positive dependence like "association'", stochasti-
cally increasing in sequence" and "positively likelihood ratio

dependence' do not hold in general. However, positive orthant
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dependence does imply non-negative correlations by the ex-
pression for the covariance given in Lehmann (1960).

(¢) Corollary 2 seems somewhat related to the bivariate chi-
squared inequality given by Jensen (1969). ‘lowever Jensen's
inequality, while two-sided, only hold for k = 2 , equal
degress of freedom, and identical intervals. DMoreover, since
bivariate chi-squared random variables defined in this manner
are conditionally independent and identically distributed as
shown by Shaked (1977), Jensen's inequality would also hold
for any Borel set.

bl

(b)Y Corollary 2 implies that the product of the marginal

v

c.d.f.'s of multivariate chi-squared random variables serve
as a lower bound for the joint c¢.d.f. of the random variables.
A similar statement applies for multivariate F random
variables such as discussed by Schuurmann, Xrishnaiah and
Chattopadhyay (1975). This follow by conditioning on the
independent denominator, applying Corollary 2, and then using
Lemma 3.

(¢) 1f goodness of fit statistics are defined on different
co-ordinates of multivariate data, then the asymptotic chi-
squared distributions, assuming the null hypotheses to be
true, will satisfy the inequality in Corollary 2. Thus if
one rejects the hypothesis that all univariate hypotheses

are true whenever a univariate hypothesis is rejected, he
will, asymptotically, have a conservative estimate of the

significance level if he treats the individual tests as being

g i ;‘
- ———— &
" " Wp— A_m




independent .

(d) An application of Corollary 3 involves simultaneous in-
ference in multivariate linear regression. That is, let Y
be a N x p data matrix of N independent observations on

p responses, X be a N x q design matrix of fixed known
independent variables, B be a q x p matrix of parameters
and E be a N x p matrix of random errors whose rows are
distributed independently as n(0, %) random vectors. It
is well known from least squares theory that the estimator

of B which minimizes Tr[(Y - XB) (Y - XB)] 1is given by

T L T
qQxp
assuming XX is of full rank. The distribution of the row-

wise rolled out version of 3 is then multivariate normal
with covariance matrix (X°X) '® ¥ and mean equal to the
row-wise rolled out B .

Moreover, Qp = YY - B°X°X3 s independent of B and
possesses a central Wishart distribution with N - q Jdegrees of
freedom and covariance matrix ¥ . Thus if we construct

th

ellipsoidal confidence regions for the i row of B based

on the ith row of B and Qg from the expression

P(B.

P | 2y
~1 & Ei) QE (Bi A B') > Ci) - ] o \li »

o

then Corollary 3 guarantees that the confidence coefficient for ;

all the ellipsoidal regions to contain the respective para-




T —————————— e . —————— e b st - e u—

.lb.

meters must be at least (1 - “i) . This generalizes the
known comparable result for univariate linear regression.

(e} Siotani (1959) is concerned with

[ g+ p*ly
Tuax  ™axiZy S &)
where 2., ..., Iy is a random sample from a n(0, )

distribution and S possesses an independent W(v,¥) distribution,
|

Siotani approximates the distribution of Tﬁ\‘ by using

Bonferroni inequalities. However the product inequality given

in Theorem 3 will be closer to the true probabilities and hence

could be used to improve Siotani's approximations.

LA G e
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